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Abstract: The selection of an appropriate life test plan is extremely important for any product as it not just 
improves quality of the product but also reduces testing costs. In this approach however, the choice of suitable 
costs plays an important role. In this paper, a decision model is developed to determine optimal life testing 
plan by minimizing the relevant costs involved for non-repairable products sold under general rebate 
warranty. The life testing plan is developed in presence of Type-I hybrid censoring for products having 
Weibull distributed lifetimes. A constrained optimization approach is followed considering both producer’s 
and consumer’s risk and suitable analysis techniques are employed in obtaining the optimal solution. Monte 
Carlo simulation is conducted in order to illustrate that the specific risks (producer’s and consumer’s risk) 
are met. In order to study the sensitivity of the optimal solution due to mis-specification of parameter values 
and cost components, a well designed sensitivity analysis is incorporated using parameter estimates from 
real life Type-I hybrid censored data set.

Keywords: Life testing plans, Reliability, Acceptance sampling, Type-I hybrid censoring, General rebate

warranty, Constrained optimization.

1 Introduction

In manufacturing and production industries, acceptance sampling is one of the widely employed

techniques for industrial quality control. It helps manufacturing houses in tackling the problem of selection

of a lot or batch of raw materials or any other component units. The disparity between the required and the

real supplied manufactured goods quality can be diminished considerably with acceptance sampling plans

Wu et al (2015). Quality of a product shapes beliefs of customers and hence can have an impact on sales

which further justifies the importance of acceptance sampling plans. Typically an acceptance sampling plan

can be described as follows. Let us suppose that a shipment of raw materials is received by a manufacturing

unit. A sample is drawn from the lot of raw materials received and some pre-specified quality characteristics

are examined. The information obtained from the inspected sample is wielded to reach the conclusion on

acceptance or rejection of the lot.

The lifetime of a product is one of the essential quality features of consumer durable products. Reliability

data are usually censored since the response values are not observable for all the units under study. So while

testing the quality characteristic such as lifetime of a product we have to keep in mind that the quality

attribute under study is not some instantaneously obtainable dimensional measurement. In life testing
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literature, the two most widely used censoring schemes are Type-I and Type-II censoring schemes. In

Type-I censoring scheme, the test is aborted after a pre-decided time T ; whereas in Type-II censoring, the

termination of the test is subject to failure of a pre-fixed number of items r. The hybrid censoring scheme

which is popularly known in the literature as Type-I hybrid censoring scheme was initially introduced by

Epstein (1954) and can be considered as a mixture of Type-I and Type-II censoring schemes. It can be

described briefly as follows: Let us consider n identical units are put on test. Now if X1:n, ..., Xn:n be the

ordered lifetimes of the units put on test, then the experiment is aborted either when a pre-chosen number

r < n out of n items has failed or when a pre-determined time T has elapsed. Hence the life test can be

terminated at a random time T ∗ = min{Xr:n, T0}. One of the following two types of observations can be

witnessed under Type-I hybrid censoring scheme.

Case I: {X1:n < ... < Xr:n} if Xr:n < T0.

Case II: {X1:n < ... < Xd:n < T0} if d+ 1 ≤ r < n and T0 ≤ Xr:n.

Figure 1: Schematic illustration of Type-I hybrid censoring scheme.
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Since life testing involve as well as influence various costs, it is rational for a decision maker to plan the test

so as to minimize the average aggregate cost involved. Life testing plans under different censoring schemes

have been studied extensively in the literature. Yeh (1994) used Bayesian approach to develop life test

plans for products following exponentially distributed lifetimes under Type-I censoring setup. Balasooriya

et al (2000) determines life test plans for products following Weibull distributed lifetimes under Type-II

progressive censoring. The method followed by Balasooriya et al (2000) takes producer’s and consumer’s

risks into account but no cost considerations are made in the design. A similar approach was followed

by Bhattacharya et al (2015), where life test plans were developed for Weibull distributed products under

hybrid censoring setup. In addition to that they also followed variance minimization approach to obtain

optimum life test plans. Chen et al (2004a) proposed a general Bayesian framework for Weibull distributed

product lifetimes with mixed censoring. Following a similar approach Chen et al (2004b) presented life

test plans for products with exponentially distributed lifetimes using random censoring schemes. Bayesian
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approach with quadratic loss function was employed by Lin et al (2008) under hybrid censoring setup.

Similarly other scholars have approached the problem of life testing through a combination of methods and

censoring schemes, but while following a cost function approach very few papers in the available literature

have included warranty cost which is an important cost for consumer durable products. Kwon (1996) was the

first paper to include warranty cost as acceptance cost while designing optimal life testing plans for products

with Weibull distributed lifetime under Type-II censoring setup employing a Bayesian approach. General

rebate warranty policy was considered in the paper for calculation of warranty cost which is a combination of

two most widely used elementary warranty policies for non-repairable products, free replacement warranty

and pro-rata warranty. In free replacement warranty, a consumer can avail warranty services without any

fee being incurred during the specified warranty period; whereas a pre-set proportion of the cost of repair

is charged from a consumer on a pro-rata basis during the specified warranty period in case of pro-rata

warranty. Following Kwon (1996); Huang et al (2008), Tsai et al (2008), and Hsieh and Lu (2013) included

warranty cost in their studies under similar setup of Type-II censoring scheme. But to the best of our

knowledge warranty cost has not been included for designing life testing plans in any other censoring setup.

In this paper we determine an optimum life test plan in presence of Type-I hybrid censoring using

a cost function approach which has cost for products sold under general rebate warranty scheme having

Weibull product lifetimes. A constrained optimization approach is inculcated to account for producer’s

and consumer’s risk. The rest of the paper is organized as follows. In Section 2 we discuss in detail the

framework of the acceptance sampling plan under Type-I hybrid censoring scheme for Weibull distributed

product lifetimes. We describe the relevant costs involved and formulate the expected cost minimization

problem in Section 3. In Section 4 we discuss the approach followed to obtain an optimum solution. In

Section 5 we carry out the Monte Carlo simulation. It is interesting to note that appropriate variables can

be used as a proxy of time to abort the experiment. One such example is used in Section 6 of this paper for

the purpose of sensitivity analysis. The Lawless (2003) data pertaining to locomotive controls used in Section

6 is censored in terms of miles traversed instead of time. Finally, we put down our concluding remarks in

Section 7.

2 Framework

We study life testing plan with Type-I hybrid censoring for products with Weibull distributed lifetime

sold under general rebate warranty. Hence the lifetime X of a testing unit follows Weibull distribution with

probability density function (pdf), fX(x) given by

fX(x) = kλkxk−1e−(λk)
k

;x > 0, (2.1)

where k > 0 and λ > 0 are the respective shape and scale parameters. The corresponding cumulative

distribution function (CDF), FX(x) can be written as

FX(x) = 1− e−(λx)
k

;x > 0. (2.2)

If we consider the transformation T = lnX, the corresponding CDF of the of the extreme value distribution

of T is given by

FT (t) = 1− e−e
t−µ
σ ;−∞ < t <∞, (2.3)
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where −∞ < µ < ∞ and σ > 0 are the respective location and scale parameters given by µ = − lnλ and

σ = 1
k . Let X1, X2, ..., Xn be the lifetimes of n units to be put on test which follow Weibull distribution given

by (2.1). Hence T1, T2, ..., Tn will be the corresponding log-lifetimes which follow extreme value distribution

given by (2.3). Suppose the ordered lifetimes of these n units be given by T1:n ≤ T2:n ≤ ... ≤ Tn:n. If

we consider Type-I hybrid censoring framework, then the two random variables representing the number of

failures and log-censoring time can be denoted by D and τ = min(Tr:n, T0) respectively, where T0 = lnX0

and X0 is the censoring time. Accordingly the data can be represented by (T1:n, T2:n, ..., TD:n, D). The

likelihood function can be written as

L(µ, σ) ∝
d∏
i=1

fT (ti:n)(1− FT (τ0))
n−d

, (2.4)

where ti:n, d, and τ0 are the observed values of Ti:n, D, and τ respectively. Using results from Park and

Balakrishnan (2009), the Fisher information matrix can be written as

`(θ) =

∫ T0

−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
r∑
i=1

fi:n(t)dt; (2.5)

where hT (t) = 1
σ e

t−µ
σ and fi:n(t) = i

( n
i
)

1
σ e

t−µ
σ −(n−i+1)e

t−µ
σ

(
1− e−e

t−µ
σ

)i−1
are the hazard and density

function of T and Ti:n respectively. The expression for `(θ) is of the form

`(θ) =

(
`11(θ) `12(θ)

`21(θ) `22(θ)

)
;

where,

`11(θ) =
1

σ2

∫ T0

−∞

r∑
i=1

fi:n(t)dt,

`22(θ) =

∫ T0

−∞

( t− µ
σ2

+
1

σ

)2 r∑
i=1

fi:n(t)dt,

`12 = `21 =
1

σ

∫ T0

−∞

( t− µ
σ2

+
1

σ

) r∑
i=1

fi:n(t)dt.

Hence the variance-covariance matrix can be computed by inverting the Fischer information matrix as

`−1(θ) =

(
`11(θ) `12(θ)

`21(θ) `22(θ)

)
.

While testing lifetime of a product as quality attribute, the lower specification limit is particularly im-

portant. Lower specification limit (LSL) is the lowest level of product quality that is within the acceptable

range. Since in case of lifetime as a quality attribute, higher the lifetime of the product better is its quality.

Hence we only need to be concerned with the LSL. Suppose the actual one-sided lower specification limit

be L pertaining to items from (2.1), then the items with lifetimes less than L should be considered noncon-

forming and hence unacceptable. Since log-lifetimes are used while framing the model, therefore the fraction

of nonconforming items, p, can be written as p = Pr(T ≤ L′), where L′ = lnL. Using the lot acceptance

criterion derived by Lieberman and Resnikoff (1955) we get the following expression

µ̂− kσ̂ > L′; (2.6)
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where µ̂ and σ̂ are the maximum likelihood estimates of µ and σ respectively and k is acceptability constant.

Typically r is fixed through the degree of censoring or proportion of censoring q, where q = 1 − r/n

(Schneider, 1989). The statistic T = µ̂ − kσ̂ is asymptotically normal with mean E[T ] = µ − kσ and

variance V ar[T ] = `11(θ) + k2`22(θ) − 2k`12(θ), where `11, `22 and `12 are elements of variance-covariance

matrix and θ = (µ, σ). So the standardized variate

U =
µ̂− kσ̂ − (µ− kσ)√

`11(θ) + k2`22(θ)− 2k`12(θ)
(2.7)

is also asymptotically normal with mean 0 and variance 1. Therefore using arguments from Schneider (1989),

the approximated OC curve can be represented by

L (p) = Pr(µ̂− kσ̂ > L′|p)

= 1− Φ

(
σ(up + k)√

S

)
;

(2.8)

where, S = `11(θ) + k2`22(θ) − 2k`12(θ) and up = L′−µ
σ is the pth quantile of the standard extreme value

distribution corresponding to the nonconforming fraction p = Pr((T − µ)/σ ≤ (L′ − µ)/σ) and L (p) is

decreasing in p (Bhattacharya et al, 2015) and Φ is standard normal distribution function.

If we consider α and β as producer’s risk and consumer’s risk respectively, then by fixing points (pα, 1−α)

and (pβ , β) on the OC curve we can obtain the value of k and also n for any known value of T0.

The expression for k thus obtained can be written as

k =
upαz1−β − upβzα

zα − z1−β
,

and the value of n can be found out by solving the following expression for known value of T0

S

σ2

(
zα − z1−β
upα − upβ

)2

= 1, (2.9)

where zα and z1−β are αth and (1− β)th quantiles of standard normal distribution and upα and upβ are pα
th

and pβ
th quantiles of the standard extreme value distribution corresponding to the nonconforming fractions

pα and pβ respectively.

3 Determining the cost function

From the existing literature (Kwon, 1995; Hsieh and Lu, 2013) we can find an accordance that consistently

emerges on the costs involved or impacted by life testing plan, following which we have involved in this study

the following costs, 1. the cost of accepting a lot, 2. the cost of rejecting a lot, 3. the time-consumption cost,

and 4. the inspection cost. Now if the products are sold under general rebate warranty policy, the decision

to accept lot is going to effect the warranty cost. Hence warranty cost can be substituted for the cost of

acceptance of a lot (Kwon, 1996; Huang et al, 2008; Tsai et al, 2008; Hsieh and Lu, 2013). The warranty

cost thus adopted as acceptance cost is a combination of two warranty policies, free-replacement warranty

and pro-rata warranty. The combination of the two warranty policies is best known in the literature as
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general rebate warranty. The mathematical expression for general rebate warranty is given by the following

expression

c∗w(x) =


cw x < w1

cw
w2−x
w2−w1

w1 ≤ x ≤ w2

0 x > w2.

(3.1)

So, if the failure time is less than w1, the cost incurred for free replacement is ca. If the product has failure

time between interval [w1, w2], the cost incurred for pro-rata warranty is in proportion to the difference

between failure time and w2, which is decreasing in nature. If the failure time is beyond w2, no warranty

costs are incurred. Since we use log lifetimes, therefore according to general rebate warranty policy the cost

of accepting an item with log-lifetime t is

c∗a(t) =


ca t < lnw1

ca
w2−et
w2−w1

lnw1 ≤ t ≤ lnw2

0 t > lnw2.

(3.2)

Therefore the expected warranty cost per unit is given by

w(θ) = ca

(
w2FT (lnw2)− w1FT (lnw1)

w2 − w1
− 1

w2 − w1

∫ lnw2

lnw1

etfT (t)dt

)
. (3.3)

Hence the expected warranty (acceptance) cost if n out of N items are put on test is given by

Cw = (N − n)w(θ)

(
1− Φ

(σ(up + k)√
S

))
. (3.4)

From the literature, rejection cost usually is taken as cost due to units that are not tested (Hsieh and Lu,

2013). Thus if cr is the cost per unit for the items that are not put on test, then the average cost of rejecting

a lot is given by

Cr = (N − n)crΦ
(σ(up + k)√

S

)
. (3.5)

Using results of average time taken during test from Bhattacharya et al (2014), the expected log-time of the

test can be written as

E[τ ] = E[min(Tr:n, T0)]

= T0P (Tr:n ≥ T0) + E[Tr:n|Tr:n < T0]P (Tr:n < T0)

= T0

(
1−

n∑
j=r

(
n

j

)
FT (T0)

j(
1− FT (T0)

)n−j)
+ r

(
n

r

)∫ T0

0

tFT (t)
r−1(

1− FT (t)
)n−r

fT (t)dt.

(3.6)

Thus if ct be the cost per unit, the expression for expected time consumption cost is given by Ct = ctE[τ ].

Also if ci is the unit cost of inspection, the average cost of inspection can be written as Ci = nci. The

aggregate cost function is

TC(n, T0) = Cw + Cr + Ct + Ci

= (N − n)w(θ)

(
1− Φ

(σ(up + k)√
S

))
+ (N − n)crΦ

(σ(up + k)√
S

)
+ ctE[τ ] + nci

= (N − n)

(
w(θ) +

(
cr − w(θ)

)
Φ
(σ(up + k)√

S

))
+ ctE[τ ] + nci
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Therefore, the optimal design problem can be expressed as follows:

minimize TC(n, T0)

subject to S
σ2

(
zα−z1−β
upα−upβ

)2
− 1 = 0.

The equality constraint as also shown in (2.9) ensures that the already agreed upon values pertaining to

producer’s and consumer’s risks are being maintained.

4 Determining the optimal solution

The optimization problem for determining the optimal life testing plan stated in the aforementioned

section is fairly complex in nature. It is important to note that the complexity is enhanced by its twofold

character of being a nonlinear mixed integer programming problem. Due to the complex nature of the

mathematical functions involved in framing various costs that constitute the objective function, integer

inputs for the values of n are required. Hence to simplify the problem, instead of using n as a decision

variable we use pn = n/N . To retain the integer nature of n, we replace n with bp∗nNc, where b.c represents

greatest integer or the floor function. The continuous nature of pn (pn ∈ [0, 1]) transforms the problem to

a nonlinear programming problem where the traditional algorithms such as augmented Lagrangian can be

used to find the optimal solution. Therefore the transformed problem can be written as follows

minimize TC(pn, T0)

subject to S
σ2

(
zα−z1−β
upα−upβ

)2
− 1 = 0.

In order to extract the optimal value of n from the solution obtained by solving the above problem we again

take the help of the floor function. The procedure followed to solve the problem can be summarized using

the following steps:

Step 1: Take pn = n
N as a decision variable.

Step 2: Replace n with bp∗nNc in the objective and the constraint function.

Step 3: Minimize the objective function with respect to the given constraint to find the optimal values of

(p∗n, T
∗
0 ).

Step 4: Obtain n∗ = bp∗nNc and X0 = eT0 to find the optimal design (n∗, X∗0 ).

The values of pα and pβ are usually determined through joint accordance of the producer and

the consumer. But for the purpose of our study we used the values from MIL-STD-105D (U D of Defense,

1963) which is a common practice followed in the literature (Schneider, 1989; Balasooriya and Low, 2004;

Bhattacharya et al, 2015). For computational purpose we have used the values of the parameters as µ = 0

and σ = 1. We then found the expression for total cost considering the following unit costs ca = 0.15

(unit cost of acceptance), cr = 0.80 (unit cost of rejection), ct = 0.08 (unit cost of time consumption) and

ci = 0.05 (unit cost of inspection). The auglag function from nloptr package in R 3.2.2 was used to solve

the problem. The solutions thus obtained are stated in Table 1.
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It can be observed from the results that the optimum sample size (n∗) increases with increase in

the degree of censoring (q) whereas the optimum censoring time (X∗0 ) decreases. Figure 2 portrays the

aforementioned observations graphically. The decrease in optimum total cost with increase in degree of

censoring can be attributed to the observed decrease in censoring time as well as decrease in proportion of

failures which follows from the relationship q = 1− r/n.

In the above illustration the lot size (N) is assumed to be 500. We observe the effect in optimal design

with change in lot size from the following table (Table 2) keeping the degree of censoring fixed at 0.5. We

can observe that with change in lot size the optimal design does not show any major difference.

5 Monte Carlo simulation

A rigorous simulation study is conducted to validate if the stated risks are being met. The study is

conducted for plans computed in Tabe 1. Keeping n, k,X0, α, β, pα and pβ fixed, 10,000 data sets are

simulated. The maximum likelihood estimates are obtained using equation (2.4) for each of the data sets.

Now if we consider L
′

= FT
−1(pα) and use the lot acceptance criterion µ̂ − kσ̂ > L

′
to reject the lots,

the proportion of rejection should come close to α. If we repeat the same considering L
′

= FT
−1(pβ), the

proportion of acceptance should come close to β. Table 3 shows the results of the simulation study. It can

be seen that the estimated values (α̂ and β̂) are closer to the stated risks.

6 Sensitivity analysis

In the process of development of the aforementioned sampling plan we rely on the parameters of

the extreme value distribution of T . So the optimum design depends on the choice of the parameters

of the distribution. Hence to investigate the effect of mis-specification of parameters in the optimum

design and the total cost, we incorporate a sensitivity analysis study. For the purpose of this study

we have used a historical real life data set from Lawless (2003). Each point of the data set repre-

sents the number of thousand miles at which different locomotive controls have failed in a life testing

experiment. The data set involves a sample size (n) of 96 and the test was aborted either when 135

thousand miles (T0) elapsed or when 37 failures (r) were observed. So as we can observe that number of

traversed miles is taken as a proxy for failure times for the life testing experiment. The data depicting the

failure times (in thousand of miles) of the units failed during the life test experiment is represented as follows:

22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 81.5, 82.0, 83.0,

84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5, 113.5, 116.0, 117.0, 118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0,

132.5 and 134.0.

For the purpose of our analysis we estimate the parameters of the distribution given by equation

(2.3) with respect to the aforementioned data set. Note that in addition to the above data points the data

set consists of 59 more data points which assumes a value of 135 (censoring time). The maximum likelihood
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estimation is done using the expression for likelihood function obtained from (2.4). We also obtain the

standard errors of the estimates and hence using estimates ± standard error we find three set of values for

each parameter. Since we have two parameters involved in the process with three values attributed to each,

therefore using different combinations we arrive at nine pairs of parameter values. Now using the α = 0.05,

β = 0.1 and three pairs of (pα, pβ) values from MIL-STD-105D (U D of Defense, 1963), as has been used ear-

lier, we find the optimal design corresponding to each of the nine set of parameters. Note that the degree of

censoring in this case is considered to be q = 0.614583 using the fraction of failed items in the data set. Table

4 gives us the results thus obtained through the process. From Table 4 we can observe that the optimal design

does not show any great deviation or trend with slight change in parameter values. But on the other hand,

a clear trend emerges from the values of optimum cost. It can be seen that with the increase in parameter

µ (keeping σ fixed) the optimum total cost decreases but with the increase in parameter σ (keeping µ fixed)

the optimum total cost increases. Now the change in total cost may perceptively appear insignificant but it

should be kept in mind that all the unit costs are considered within an interval [0, 1] and hence any change

in first or second decimal values of optimum total cost cannot be considered negligible and hence insignificant.

7 Conclusion

In this work, a method has been proposed to arrive at optimum reliability acceptance sampling plans

under Type-I hybrid censoring. We have considered Weibull lifetime models in the context of our study,

however under the ambit of developed methodology other lifetime distributions of log-location scale family

can also be used. The work tries to formulate optimum reliability acceptance sampling plans from a

management perspective which makes it valuable in dealing with real life problems pertaining to product

quality management. As a scope for future research, the proposed method can also be studied under other

censoring schemes. Many a times it may be realistic to assume that the parameters involved arise out of

some prior distribution because of uncertainty engaged in the parameter values. Hence for future research

the problem can also be studied under a Bayesian approach.
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Appendix A

Table 1: Type-I hybrid censored reliability acceptance sampling plans for given values of q, α, β, pα, and pβ .

(α, β) (0.05, 0.1)

(pα, pβ) q k p∗n n∗ T ∗0 X∗0 TC∗

0.1 3.129706 0.1005 50 4.2131 67.5670 81.7436

0.2 3.129706 0.1081 54 3.0617 21.3630 81.4389

(0.02090, 0.07420) 0.3 3.129706 0.1196 59 2.0909 8.0924 80.5850

0.4 3.129706 0.1293 64 1.7169 5.5670 79.8420

0.5 3.129706 0.1362 68 1.3538 3.8719 79.5403

0.1 4.509205 0.1709 85 4.7665 117.5056 84.6080

0.2 4.509205 0.1875 93 3.8835 48.5947 83.4286

(0.0190, 0.05350) 0.3 4.509205 0.2043 102 2.8297 16.9419 81.9584

0.4 4.509205 0.2214 110 1.5950 4.9283 80.8920

0.5 4.509205 0.2404 120 1.1415 3.1314 79.4685

0.1 2.801873 0.1136 56 4.6910 108.9661 70.0339

0.2 2.801873 0.1229 61 3.4177 30.5019 69.4926

(0.03190, 0.09420) 0.3 2.801873 0.1308 65 2.8921 18.0324 69.0587

0.4 2.801873 0.1382 69 2.6834 14.6361 68.6409

0.5 2.801873 0.1476 73 2.1496 8.5817 68.2282

Table 2: Type-I hybrid censored reliability acceptance sampling plans for different lot sizes (N) with q = 0.5.

(pα, pβ) N p∗n n∗ T ∗0 X∗0 TC∗

(0.02090, 0.07420) 300 0.2285 68 1.3186 3.7384 44.2756

500 0.1362 68 1.3537 3.8719 79.5403

1000 0.0682 68 1.2912 3.6373 167.7019

1500 0.0457 68 1.0592 2.8841 255.8635

(0.0190, 0.05350) 300 0.4021 120 1.2927 3.6426 40.7520

500 0.2404 120 1.1415 3.1314 79.4685

1000 0.1208 120 1.3746 3.9535 176.0174

1500 0.0801 120 1.1147 3.0488 272.6502

(0.03190, 0.09420) 300 0.2444 73 2.0734 7.9515 37.9654

500 0.1476 73 2.1496 8.5817 68.2282

1000 0.0744 74 2.3835 10.8427 143.7471

1500 0.0489 73 2.2784 9.7607 219.5422
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Appendix B

Table 3: Simulation results obtained using Type-I hybrid censored reliability acceptance sampling plans for

α = 0.05 and β = 0.1.

(pα, pβ) q n∗ X∗0 α̂ β̂

0.1 50 67.5670 0.041 0.124

0.2 54 21.3630 0.043 0.121

(0.02090, 0.07420) 0.3 59 8.0924 0.043 0.118

0.4 64 5.5670 0.045 0.120

0.5 68 3.8719 0.044 0.117

0.1 85 117.5056 0.043 0.118

0.2 93 48.5947 0.044 0.118

(0.0190, 0.05350) 0.3 102 16.9419 0.044 0.119

0.4 110 4.9283 0.042 0.117

0.5 120 3.1314 0.045 0.120

0.1 56 108.9661 0.046 0.121

0.2 61 30.5019 0.046 0.123

(0.03190, 0.09420) 0.3 65 18.0324 0.047 0.121

0.4 69 14.6361 0.046 0.120

0.5 73 8.5817 0.047 0.119
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Appendix C

Table 4: Results of sensitivity analysis using Lawless (2003) failure data of locomotive controls where q =

0.614583.

(pα, pβ) µ̂, σ̂ pn
∗ n∗ T ∗0 X∗0

(5.193145151, 0.418876401) 0.1770 88 4.1657 64.4389 25.2745

(5.2010132, 0.418876401) 0.1776 88 4.1735 64.9480 25.1509

(5.208881249, 0.418876401) 0.1773 88 4.1814 65.4610 25.0294

(5.193145151, 0.4231725) 0.1777 88 4.1552 63.7635 25.4073

(0.02090, 0.07420) (5.2010132, 0.4231725) 0.1774 88 4.1630 64.2672 25.2828

(5.208881249, 0.4231725) 0.1774 88 4.1709 64.7748 25.1604

(5.193145151, 0.427468599) 0.1754 87 4.2333 68.9465 25.6276

(5.2010132, 0.427468599) 0.1753 87 4.2214 68.1266 25.5181

(5.208881249, 0.427468599) 0.1755 87 4.2153 67.7170 25.4129

(5.193145151, 0.418876401) 0.2665 133 5.3874 218.6349 32.8242

(5.2010132, 0.418876401) 0.2673 133 5.3975 220.8565 32.7172

(5.208881249, 0.418876401) 0.2667 133 5.3715 215.1896 32.6119

(5.193145151, 0.4231725) 0.2667 133 5.3782 216.6434 32.9397

(0.0190, 0.05350) (5.2010132, 0.4231725) 0.2673 133 5.3803 217.0896 32.8319

(5.208881249, 0.4231725) 0.2674 133 5.3298 206.4131 32.7320

(5.193145151, 0.427468599) 0.2669 133 5.3364 207.7665 33.0549

(5.2010132, 0.427468599) 0.2679 133 5.3364 207.7662 32.9465

(5.208881249, 0.427468599) 0.2663 133 5.2446 189.5425 32.8397

(5.193145151, 0.418876401) 0.1705 85 4.5481 94.4502 12.8135

(5.2010132, 0.418876401) 0.1717 85 4.5659 96.1526 12.6835

(5.208881249, 0.418876401) 0.1714 85 4.5737 96.9082 12.5561

(5.193145151, 0.4231725) 0.1707 85 4.5339 93.1204 12.9531

(0.03190, 0.09420) (5.2010132, 0.4231725) 0.1716 85 4.5526 94.8831 12.8224

(5.208881249, 0.4231725) 0.1705 85 4.5707 96.6184 12.6935

(5.193145151, 0.427468599) 0.1710 85 4.5449 94.1528 13.0916

(5.2010132, 0.427468599) 0.1716 85 4.5541 95.0209 12.9602

(5.208881249, 0.427468599) 0.1714 85 4.5649 96.0495 12.8308
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Appendix D

Figure 2: Change of optimal sample size and censoring time against the degree of censoring.
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